Package: SeBR 1.0.0

SeBR: Semiparametric Bayesian Regression Analysis

Monte Carlo sampling algorithms for semiparametric Bayesian regression analysis. These models feature a nonparametric (unknown) transformation of the data paired with widely-used regression models including linear regression, spline regression, quantile regression, and Gaussian processes. The transformation enables broader applicability of these key models, including for real-valued, positive, and compactly-supported data with challenging distributional features. The samplers prioritize computational scalability and, for most cases, Monte Carlo (not MCMC) sampling for greater efficiency. Details of the methods and algorithms are provided in Kowal and Wu (2024) <doi:10.1080/01621459.2024.2395586>.

Authors:Dan Kowal [aut, cre, cph]

SeBR_1.0.0.tar.gz
SeBR_1.0.0.zip(r-4.5)SeBR_1.0.0.zip(r-4.4)SeBR_1.0.0.zip(r-4.3)
SeBR_1.0.0.tgz(r-4.4-any)SeBR_1.0.0.tgz(r-4.3-any)
SeBR_1.0.0.tar.gz(r-4.5-noble)SeBR_1.0.0.tar.gz(r-4.4-noble)
SeBR_1.0.0.tgz(r-4.4-emscripten)SeBR_1.0.0.tgz(r-4.3-emscripten)
SeBR.pdf |SeBR.html
SeBR/json (API)
NEWS

# Install 'SeBR' in R:
install.packages('SeBR', repos = c('https://drkowal.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/drkowal/sebr/issues

On CRAN:

3.70 score 1 stars 3 scripts 158 downloads 14 exports 0 dependencies

Last updated 3 months agofrom:bf1405f7fe. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winOKNov 21 2024
R-4.5-linuxOKNov 21 2024
R-4.4-winOKNov 21 2024
R-4.4-macOKNov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:bgp_bcblm_bcbqrbsm_bcg_bcg_inv_bcplot_pptestrank_approxsbgpsblmsbqrsbsmsimulate_tlmsir_adjust

Dependencies:

Introduction to SeBR

Rendered fromSeBR.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-09-03
Started: 2023-06-21